Abstract

In order to prepare SiO(2) nanoparticles that are dispersible in various organic solvents, an anionic surfactant 1, which branches into a hydrophobic chain and a hydrophilic chain, was adsorbed on to SiO(2) nanoparticles through a layer-by-layer surface modification route using polyethyleneimine (PEI). First, the relationship among the additive content of PEI, adsorbed content of PEI, and the redispersion stability of the SiO(2) nanoparticles in water was investigated. While almost the entire PEI was adsorbed when the additive PEI content was lower than 67 mg/g of SiO(2), the adsorbed content of PEI became saturated when the additive content was increased above 90 mg/g of SiO(2). SiO(2) nanoparticles that were saturated with PEI could be redispersed into water at sizes close to their primary particle size without the large-scale formation of aggregates. Next, the anionic surfactant 1 was adsorbed on the SiO(2) nanoparticles by using a SiO(2) aqueous suspension saturated with adsorbed PEI. It was found that the adsorbed content of 1 increased almost linearly as the additive content was increased when the additive condition was below 1400 mg/g of SiO(2). Furthermore, SiO(2) nanoparticles adsorbed with 80 mg/g of SiO(2) of PEI and 810 mg/g of SiO(2) of 1 could be dispersed into various organic solvents with different polarities. This layer-by-layer modification technique can also be applied to Ag nanoparticles in order to prepare Ag nanoparticles that can be dispersed in various organic solvents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.