Abstract

This paper reports the fabrication of a bi-protein/layered double hydroxide (LDH) ultrathin film in which hemoglobin (HB) and horseradish peroxidase (HRP) molecules were assembled alternately with LDH nanosheets via the layer-by-layer (LBL) deposition technique, and its electrocatalytic performances for oxidation of catechol were demonstrated. The results of XRD indicate that the HB–HRP/LDH ultrathin film possesses a long range stacking order in the normal direction of the substrate, with the two proteins accommodated in the LDH gallery respectively as monolayer arrangement. SEM images show that the film surface exhibits a continuous and uniform morphology, and AFM reveals the Root-Mean-Square (RMS) roughness of ∼10.2 nm for the film. A stable direct electrochemical redox behavior of the proteins was successfully obtained for the HB–HRP/LDH film modified electrode. In addition, it exhibits remarkable electrocatalytic activity towards oxidation of catechol, based on the synergistic effect of the two proteins. The catechol biosensor in this work displays a wide linear response range (6–170 μM, r = 0.999), low detection limit (5 μM), high sensitivity and good reproducibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.