Abstract

This article develops and experimentally validates a distributed predictive control algorithm for closed-loop control of inkjet 3-D printing to handle constraints, e.g., droplet volume bounds, as well as the large-scale nature of the 3-D printing problem. The large number of decision variables, i.e., droplet volumes at each grid point, in high resolution inkjet 3-D printing makes centralized methods extremely time-consuming, thus, a distributed implementation of the controller is necessary. First, a graph-based height evolution model that captures the liquid spreading dynamics is described. Based on this model, a scalable closed-loop control algorithm using distributed model predictive control (MPC) that can reduce computation time significantly is designed and experimentally implemented. The performance and efficiency of the algorithm are shown to outperform open-loop printing and closed-loop printing with existing centralized MPC methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.