Abstract

We report on the first experimental study of the layer-to-layer compression and enhanced optical properties of few-layer graphene nanosheet by applying ion irradiation. The deformation of graphene layers is investigated both theoretically and experimentally. It is observed that after the irradiation of energetic ion beams, the space between separate graphene layers is reduced due to layer-to-layer compression, resulting in tighter contact of the graphene sheet with the surface of the substrate. This processing enables enhanced interaction of the graphene with the evanescent-field wave near the surface, which induces reinforced polarization-dependent light absorption of the graphene. Utilizing the ion-bombarded graphene nanosheets as saturable absorbers, we have realized efficient Q-switched waveguide lasing with enhanced performance through the interaction of the graphene and evanescent field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call