Abstract
Experiments have proved that one solution to improve the ductility of metallic glasses lies in introducing graphene and synthesizing metallic glass (MG) nanolaminates. In this work, molecular dynamic simulations are conducted to investigate layer thickness effects on the tensile behaviors of Cu50Zr50 metallic glass-graphene nanolaminates (MGGNLs). The increase in MG layer thickness leads to the decrease in the ultimate strength of MGGNL and helps to the development of shear bands. Meanwhile, plastic deformation mode transits from homogeneous flow to shear localization. The critical layer thickness related to such a transition can be predicted by the strain energy theory. Once the dissipated energy in MG matrix during shear bands formation exceeds the stored strain energy in graphene, shear localization dominates plastic deformation mode. Besides, fracture strain decreases with increasing MG layer thickness. There also exists a kink for the linear decline in fracture strain, corresponding to the plastic deformation transition. Finally, the equivalent model for layer thickness is proposed to better describe the Hall-Petch effect on the yield strength of MGGNLs. Our study provides the guidance to the synthesis of novel metallic glass nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.