Abstract

We numerically study the thermoelectric transport in AB- and AA-stacked bilayer graphene in the presence of a strong magnetic field and disorder. In the AB-stacked case, we find that the thermoelectric conductivities display different asymptotic behaviors, depending on the ratio between the temperature and the width of the disorder-broadened Landau levels (LLs), similar to those of monolayer graphene. In the high temperature regime, the transverse thermoelectric conductivity α xy saturates to a universal value 5.54k B e/h at the center of each LL, and displays a linear temperature dependence at low temperatures. The calculated Nernst signal has a peak with a height of the order of k B /e, and the thermopower changes sign at the central LL. We attribute this unique behavior to the coexistence of particle and hole LLs. In the AA-stacked bilayer case, it is found that the thermoelectric transport properties are consistent with the behavior of a band insulator. The obtained results demonstrate the sensitivity of the thermoelectric conductivity to the band gap near the Dirac point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.