Abstract

In the auditory system, distinct and reproducible transient activities responding to the onset of sound have long been the focus when characterizing the auditory cortex, i.e., tonotopic maps, subregions, and layer-specific representation. There is limited information on sustained activities because the rapid adaptation impairs reproducibility and the signal-to-noise ratio. We recently overcame this problem by focusing on neural synchrony and machine learning demonstrated that band-specific power and the phase locking value (PLV) represent sound information in a tonotopic and region-specific manner. Here, we attempted to reveal the layer-specific representation of sustained activities. A microelectrode array recorded sustained activities from layers 2/3, 4, and 5/6 of the rat auditory cortex. We characterized band-specific power and PLV patterns and applied sparse logistic regression (SLR) to discriminate (1) between the sound-induced and spontaneous activities and (2) five test frequencies from the sound-induced activities in each layer. SLR achieved the highest discrimination performance in high-gamma activities in layers 4 and 5/6, higher than in layer 2/3, indicating poor sound representation in layer 2/3. Moreover, the recording sites that contributed to the discrimination in layers 4 and 5/6 had a characteristic frequency similar to the test frequency and were often located in the belt area, indicating tonotopic and region-specific representation. These results indicate that information processing of sustained activities may depend on high-gamma oscillators, i.e., cortical inhibitory interneurons, and reflects layer-specific thalamocortical and corticocortical neural circuits in the auditory system, which may contribute to associative information processing beyond sound frequency in auditory perception.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.