Abstract

We hypothesized that expression and activity of nitric oxide synthase-3 enzyme (Nos3) in bicuspid aortic valve (BAV) aortopathy are related to tissue layer and Nos3 genotype. Gene expression of Nos3 and platelet and endothelial cell adhesion molecule-1 (Pecam1) and NOS activity were measured in intima-containing media and adventitial specimens of ascending aortic tissue. The presence of 2 Nos3 single-nucleotide polymorphisms (SNPs; -786T/C and 894G/T) was determined for non-aneurysmal (NA) and aneurysmal patients with BAV (n = 40, 89, respectively); patients with tricuspid aortic valve (TAV) and aneurysm (n = 151); and NA patients with TAV (n = 100). Elevated Nos3 relative to Pecam1 and reduced Pecam1 relative to a housekeeping gene were observed within intima-containing aortic specimens from BAV patients when compared with TAV patients. Lower Nos3 in the adventitia of aneurysmal specimens was noted when compared with specimens of NA aorta, independent of valve morphology. NOS activity was similar among cohorts in media/intima and decreased in the diseased adventitia, relative to control patients. Aneurysmal BAV patients exhibited an under-representation of the wild-type genotype for -786 SNP. No differences in genotype distribution were noted for 894 SNP. Primary intimal endothelial cells from patients with at least 1 C allele at -786 SNP exhibited lower Nos3 when compared with wild-type cells. These findings of differential Nos3 in media/intima versus adventitia depending on valve morphology or aneurysm reveal new information regarding aneurysmal pathophysiology and support our ongoing assertion that there are distinct mechanisms giving rise to ascending aortopathy in BAV and TAV patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.