Abstract

The magnetism of antimony overlayers on a ferromagnetic substrate is investigated by spin-polarized inverse photoemission and explained in terms of a spin-dependent envelope-function approximation (SDEFA). The atomic structure of the films, which were deposited by sputtering Sb onto a NiMnSb(001) substrate, is characterized by a unique combination of three features: (i) NiMnSb is a highly spin-polarized semi-Heusler alloy predicted to be halfmetallic, (ii) antimony is a semimetal, exhibiting a band structure reminiscent of indirect-gap semiconductors, and (iii) the small lattice mismatch ensures a well-controlled interface. Combined x-ray absorption spectroscopy and spin-polarized inverse photoemission yield a layer-resolved spin polarization decaying on a length scale of the order of 1 nm. The unusual range of the spin polarization in the paramagnetic overlayer is explained by considering the alloy–antimony interface as a spin-dependent perturbation potential and taking into account the low effective masses of the Sb conduction electrons (only about 0.1 for both electrons and holes).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call