Abstract
We have fabricated multi-layer superconducting shifted strip arrays (SSAs) of Nb up to 4 layers and systematically studied the vortex penetrations into these structures. We observed the vortex penetration as a function of the number of layers and the ratio of overlap between neighboring layers by using magneto-optical (MO) imaging. In the case of 2- and 3-layer SSAs, spot-like avalanches occur when the overlap is small, while linear avalanches occur when the overlap is large, consistent with our previous reports. In the 4-layer SSAs, the smallest limit of the overlap between the neighboring layers for the linear avalanche is lower. Flux penetrations parallel to the strip which were observed in the 3-layer SSA were also observed in the 4-layer SSAs with smaller ratio of overlap. Larger demagnetization effects in the middle two layers in 4-layer SSA help to make avalanches larger and more extended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.