Abstract
Superlattices (SLs) of Alo.3Gao.7As/GaAs grown by metalorganic chemical vapor deposition and heavily doped with carbon using CClp4 were annealed for 24 h at 825° C under a variety of ambient and surface encapsulation conditions. Photoluminescence atT = 1.7 K has been employed to determine approximate Al-Ga interdiffusion coefficients (D Ai-Ga) for different annealing conditions. For all encapsulants studiedD Al-Ga increases with increasing As4 pressure in the annealing ampoule. This result disagrees with trends reported for Mg-doped crystals, and with predictions of the charged point-defect (Fermilevel) model. The Si3N4 cap provides the most effecitve surface sealing against ambientstimulated layer interdiffusion (D Al-Ga ≈ 1.5-3.9 x 10-19 cm2/sec). The most extensive layer intermixing has occurred for an uncapped SL annealed under As-rich ambient (D Al-Ga ≈ 3.3 x 10-18 cm2/sec). These values are up to ~40 times greater than those previously reported for nominally undoped AIGaAs/GaAs SLs, implying that theC As doping slightly enhances layer intermixing, but significantly less than predicted by the Fermi-level effect. The discrepancies between the experimental data and the model are discussed. Pronounced changes in the optical properties of the annealed SLs with storage time at room temperature are also reported. These changes may indicate a degraded thermal stability of the annealed crystals due to high-temperature-induced lattice defects. A possibly related effect of the systematic failure to fabricate buried heterostructure quantum well lasers via impurity-induced layer disordering in similarly doped AIGaAs/GaAs crystals is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.