Abstract

We present a numerical study of double-diffusive convection characterized by a stratification unstable to thermal convection while at the same time a mean molecular weight (or solute concentration) difference between top and bottom counteracts this instability. Convective zones can form in this case either by the stratification being locally unstable to the combined action of both temperature and solute gradients or by another process, the oscillatory double-diffusive convective instability, which is triggered by the faster molecular diffusivity of heat in comparison with that one of the solute. We discuss successive layer formation for this problem in the case of an instantaneously heated bottom (plate) which forms a first layer with an interface that becomes temporarily unstable and triggers the formation of further, secondary layers. We consider both the case of a Prandtl number typical for water (oceanographic scenario) and of a low Prandtl number (giant planet scenario). We discuss the impact of a Couette like shear on the flow and in particular on layer formation for different shear rates. Additional layers form due to the oscillatory double-diffusive convective instability, as is observed for some cases. We also test the physical model underlying our numerical experiments by recovering experimental results of layer formation obtained in laboratory setups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.