Abstract

The intrinsic antiferromagnetic topological insulator (TI) MnBi4Te7 provides a capacious playground for the realization of topological quantum phenomena, such as the axion insulator states and quantum anomalous Hall (QAH) effect. In addition to nontrivial band topology, magnetism is another necessary ingredient for realizing these quantum phenomena. Here, we investigate signatures of thickness-dependent magnetism in exfoliated MnBi4Te7 thin flakes. We observe an obvious odd-even layer-number effect in few-layer MnBi4Te7. Noticeably, we show that in monolayer MnBi4Te7 the anomalous Hall effect exhibits a sign reversal. Compared with the case of MnBi2Te4, interlayer antiferromagnetic exchange coupling, which is essential for the realization of the QAH effect, is greatly suppressed in MnBi4Te7. The demonstration of thickness-dependent magnetic properties is helpful to further explore the topological quantum phenomena in MnBi4Te7.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call