Abstract
Solution-based processable high-k 2-dimensional (2D) ferroelectrics have attracted significant interest for use in next-generation nanoelectronics. Although few studies on potential 2D ferroelectric nanosheets in local areas have been conducted, reports on the thin-film characteristics applicable to the device are insufficient. In this study, we successfully synthesize high-k 2D Sr1.8Bi0.2Nan-3NbnO3n+1 (octahedral units, n = 3–5) nanosheets by the engineering of the n of NbO6 octahedral layers with A-site modification, and realized ferroelectric characteristics in ultrathin films (below 10 nm). The nanosheets are synthesized by a solution-based cation exchange process and deposited using the Langmuir-Blodgett (LB) method. As increasing the NbO6 octahedral layer, the thickness of the nanosheets increased and the band gaps are tuned to 3.80 eV (n = 3), 3.76 eV (n = 4), and 3.70 eV (n = 5). In addition, the dielectric permittivity of the 5-layer stacked nanofilm increase to 26 (n = 3), 33 (n = 4), and 62 (n = 5). In particular, the increased perovskite layer exhibits large distortions due to the size mismatch of Sr/Bi/Na ions at the A-site and promotes local ferroelectric instability due to its spontaneous polarization along the c-axis caused by an odd n number. We investigate the stable ferroelectricity in Pt/ 5-layer Sr1.8Bi0.2Na2Nb5O16 / Nb:STO capacitor by polarization-electric field (P-E) hysteresis; the coercive electric field (Ec) was 338 kV cm−1 and the remnant polarization (Pr) 2.36 μC cm−2. The ferroelectric properties of ultrathin 2D materials could drive interesting innovations in next-generation electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.