Abstract

Vanadium Dioxide (VO2) has gained wide attention for various applications as it undergoes a crystallographic transition from the monoclinic phase to the tetragonal phase at 68 °C, accompanied by huge transmittance contrast in the near-infrared (NIR) range and negligible change in the visible range. In this paper, we present a unique Layer-by-Layer self-assembled approach to construct a VO2/spacing superstructure with controlled VO2 layers, spacing thicknesses, and repeating times. The simulation indicates that such structures give intriguingly temperature-dependent light interference phenomena, which was demonstrated its potential applications in smart windows and the calculated results suggest this approach outperforms existing approaches. This simple and versatile solution-based approach opens a new avenue to fabricate the controlled optical stack which could be explored in other applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.