Abstract
The catalyst layer's high durability is essential in commercializing polymer electrolyte membrane fuel cells (PEMFCs), particularly for vehicle applications, because their frequent on/off operation can induce carbon corrosion, which affects surface properties and morphological characteristics of the carbon and results in aggregation and detachment of Pt nanoparticles on the carbon surface. Herein, to address the carbon corrosion problem while delivering a high-performance PEMFC, polydimethylsiloxane (PDMS) with high gas permeability, chemical stability, and hydrophobicity was employed to protect the catalyst layer from carbon corrosion and improve the mass transport. Because the catalyst slurry using alcohol-based solvents showed low compatibility with nonpolar solvents of the PDMS solution, a parallel two-nozzle system with separated solution reservoirs was developed by modifying a conventional three-dimensional printing machine. To determine the optimal PDMS amount in the cathode catalyst layer, PDMS solution concentration was varied by quantitatively controlling the PDMS amount coated on the electrode layer. Finally, the PEMFC with the PDMS-modified cathode of 0.1 mgPDMS cm-2 loading showed enhanced durability due to increased electrochemical surface and maximum power density by 37.2 and 21.7%, respectively, after the accelerated stress test. Furthermore, an improvement in the initial performance from enhanced water management was observed compared to those of PEMFCs with a conventional electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.