Abstract

The hybrid anodic materials with high porosity and low charge resistance exhibit high specific capacity and stable cyclic stability for lithium ion battery (LIBs). For this purpose, three-dimensional hollow material, metal organic framework (MOF-199) was coated over the active surface of oxidized derivative of graphene (Graphene oxide, GO), via layer-by-layer (LBL) coating method. Cupric acetate and benzene-1,3,5-tricarboxylic acid [Cu3(BTC)2], were alternatively coated on the active surface of GO as an anode material, to enhance the structural diversity and reduce the synergistic effect of insertion and extraction of Li+ ions for LIBs. Sharp absorption peaks from 1620 cm−1 to 1360 cm−1 and intense ring bends ∼1000 cm−1 was identified through FTIR. Powder XRD provides the evidence for size reduction of Cu3(BTC)2@GO composite (32.6 nm) comparative to GO (43.7 nm). Outcome of EIS analysis shows the charge transfer resistance of simple GO is 2410 Ω, which is 4 times higher than Rct of Cu3(BTC)2@GO composite (590 Ω). Similarly the Warburg impedance co-efficient for simple GO (448.8 Ωs−1/2) is also higher than Aw of Cu3(BTC)2@GO composite (77.64 Ωs−1/2). The synthesized material show high initial charge/discharge capacity, 1200/1420 mAh/g with 85% Coulombic efficiency and reversible discharge capacity, 1296 mAh/g after 100 cycles at 100 mA/g current density. The 98.9% Coulombic efficiency and 91% retaining capacity of composite at 100th cycle with cyclic stability, provides the phenomenon approach towards the rechargeable LIBs for industrial technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.