Abstract

The hybrid anodic materials with high porosity and low charge resistance exhibit high specific capacity and stable cyclic stability for lithium ion battery (LIBs). For this purpose, three-dimensional hollow material, metal organic framework (MOF-199) was coated over the active surface of oxidized derivative of graphene (Graphene oxide, GO), via layer-by-layer (LBL) coating method. Cupric acetate and benzene-1,3,5-tricarboxylic acid [Cu3(BTC)2], were alternatively coated on the active surface of GO as an anode material, to enhance the structural diversity and reduce the synergistic effect of insertion and extraction of Li+ ions for LIBs. Sharp absorption peaks from 1620 cm−1 to 1360 cm−1 and intense ring bends ∼1000 cm−1 was identified through FTIR. Powder XRD provides the evidence for size reduction of Cu3(BTC)2@GO composite (32.6 nm) comparative to GO (43.7 nm). Outcome of EIS analysis shows the charge transfer resistance of simple GO is 2410 Ω, which is 4 times higher than Rct of Cu3(BTC)2@GO composite (590 Ω). Similarly the Warburg impedance co-efficient for simple GO (448.8 Ωs−1/2) is also higher than Aw of Cu3(BTC)2@GO composite (77.64 Ωs−1/2). The synthesized material show high initial charge/discharge capacity, 1200/1420 mAh/g with 85% Coulombic efficiency and reversible discharge capacity, 1296 mAh/g after 100 cycles at 100 mA/g current density. The 98.9% Coulombic efficiency and 91% retaining capacity of composite at 100th cycle with cyclic stability, provides the phenomenon approach towards the rechargeable LIBs for industrial technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call