Abstract

This research created direct layer-by-layer printed zinc-based secondary batteries with an ionic liquid-based gel polymer electrolyte to power micro- and meso-scale devices. The use of a gel polymer electrolyte composed of [BMIM][Otf] ionic liquid, ZnOtf salt, and PVDF-HFP polymer binder enabled direct layer-by-layer printing of functional cells. The effects of additive printing methods on cell discharge capacity, cycle life, and internal resistance are discussed. Fully printed cells have demonstrated average discharge capacities of 0.548 mAh/cm2, energy densities of 8.20 mWh/cm3, and specific energies of 2.46 mWh/g with some cells achieving over 1000 cycles without catastrophic failure. Layer-by-layer printed devices exhibited decreased DC internal resistance and longer cycle life over previous mechanically assembled cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call