Abstract
Recently, we reported on “self-rupturing” microcapsules which consist of a biodegradable dextran-based microgel surrounded by a polyelectrolyte membrane. Degradation of the microgel increases the swelling pressure in the microcapsules which, when sufficiently high, ruptures the surrounding polyelectrolyte membrane. The membrane surrounding the microgels is deposited using the layer-by-layer (LbL) technique, which is based on the alternate adsorption of oppositely charged polyelectrolytes onto a charged substrate. In this paper, we characterize with confocal microscopy, electrophoretic mobility, scanning electron microscopy and atomic force microscopy in detail the deposition and the properties of the LbL coatings on the dextran microgels. We show that by fine-tuning the properties of both the microgel core and the LbL membrane the swelling pressure which is evoked by the degradation of the microgel is indeed able to rupture the surrounding LbL membrane. Further, we show that the application of an LbL coating on the surface of the microgels dramatically lowers the burst release from the microcapsules and results in massive release at the time the microcapsules rupture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.