Abstract
Layer-by-layer (LBL) assembly is a versatile nanofabrication technique, and investigation of its kinetics is essential for understanding the assembly mechanism and optimizing the assembly procedure. In this work, the LBL assembly of polyelectrolyte and nanoparticles were monitored in situ by capillary electrophoresis (CE) for the first time. The assembly of poly(diallyldimethylammonium chloride) (PDDA), and gold nanoparticles (AuNPs) on capillary walls causes surface-charge neutralization and resaturation, and thus yields synchronous changes in the electroosmotic flow (EOF). The EOF data show that formation of multilayers follows first-order adsorption kinetics. On the basis of the fit results, influencing factors, including number of layers, concentration of materials, flow rate, and size of AuNPs, were investigated. The stability and robustness of the assembled coatings were also characterized by CE. It was found that degradation of PDDA layers follows first-order chemical kinetics, while desorption of AuNPs takes place in a disorderly manner. The substrate strongly affects assembly of the underlying layer, while this effect is rapidly screened with increasing number of layers. Furthermore, we demonstrate that the EOF measuring step does not disturb LBL assembly, and the proposed method is reliable and rugged. This work not only studies in detail the LBL adsorption/desorption process of polyelectrolyte and nanoparticles, but also offers an alternative tool for monitoring multilayer buildup. It may also reveal the potential of CE in fields other than analytical separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.