Abstract

Photonic crystal is a key component for optical communication and computing in next generation that having a periodic 3D structure in scale with optical wave length. The major difficulty in practical use of photonic crystal exists in its fabrication process. As an optical component, it must be a defect-free large crystal with waveguide patterns affecting propagation of photons. Many attempts have been made to realize such a crystal, however, low-cost and rapid fabrication of a defect-free large crystal is still a difficult problem. Here, we propose a novel fabrication method combining colloidal crystallization and DNA nanotechnology. In this method, the face-centered lattice made of 1µ m polystyrene particle is assembled on a patterned template in a layer-by-layer fashion. In order to control the binding among particles, DNA-gold nanoparticle conjugates (10nm GNP modified with 52-mer DNA) is used. Specific bonding rules between particles and GNPs defined by base sequence of DNA realizes the layer-by-layer growth of the crystal. We have built two-layer crystal by the proposed method and the results show its feasibility. We also found some important factors necessary to improve the quality of the crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.