Abstract
Tuberculosis (TB) is a highly infectious bacterial disease. However, it can affect any body part, but is majorly a lung infection; which is potentially fatal and contagious. Like most of the serious health issues, the recovery rate of a symptomatic TB patient completely depends on the early detection and treatment. Deep learning algorithms-based computer aided diagnosis (CAD) system, can provide aid in early detection of the disease. In this regard, a method to detect infection of tuberculosis, which uses deep learning network to classify CXR images as normal or abnormal, is presented. Convolutional neural network (CNN), visual geometry group (VGG16) and high-resolution network (HRNet) models are used and their performance has been compared based on the validation loss and validation accuracy. The HRNet provides 89.7% accuracy with comparatively less loss among the proposed algorithms. The models are also deployed in android application for active clinical trials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Medical Engineering and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.