Abstract

The Lax-Wendroff method is a single step method for evolving time dependent solutions governed by partial differential equations, in contrast to Runge-Kutta methods that need multiple stages per time step. We develop a flux reconstruction version of the method in combination with a Jacobian-free Lax-Wendroff procedure that is applicable to general hyperbolic conservation laws. The method is of collocation type, is quadrature free and can be cast in terms of matrix and vector operations. Special attention is paid to the construction of numerical flux, including for non-linear problems, resulting in higher CFL numbers than existing methods, which is shown through Fourier analysis and yielding uniform performance at all orders. Numerical results up to fifth order of accuracy for linear and non-linear problems are given to demonstrate the performance and accuracy of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.