Abstract

In this paper, a variable-coefficient generalized nonlinear Schrodinger equation, which can be used to describe the nonlinear phenomena in the optical fiber, fluid or plasma, is investigated. Lax pair, higher-order rogue-wave and multi-soliton solutions, Darboux transformation and generalized Darboux transformation are obtained. Wave propagation and interaction are analyzed: (1) The Hirota and Lakshmanan–Porsezian–Daniel coefficients affect the propagation velocity and path of each one soliton; three types of soliton interaction have been attained: the bound state, one bell-shape soliton’s catching up with the other and two bell-shape soliton head-on interaction. Multi-soliton interaction is elastic. (2) The Hirota and Lakshmanan–Porsezian–Daniel coefficients affect the propagation direction of the first-step rogue waves and interaction range of the higher-order rogue waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call