Abstract

For a nonlinear Schrödinger–Hirota equation with the spatio-temporal dispersion and Kerr law nonlinearity in nonlinear optics, we derive a Lax pair, a Darboux transformation and two families of the periodic-wave solutions via the Jacobian elliptic functions dn and cn. We construct the linearly-independent and non-periodic solutions of that Lax pair, and substitute those solutions into the Darboux transformation to get the rogue-periodic-wave solutions. When the third-order dispersion or group velocity dispersion (GVD) or inter-modal dispersion (IMD) increases, the maximum amplitude of the rogue-periodic wave remains unchanged. From the rogue-dn-periodic-wave solutions, when the GVD decreases, the minimum amplitude of the rogue-dn-periodic wave decreases. When the third-order dispersion decreases, the minimum amplitude of the rogue-dn-periodic wave rises. Decrease of the IMD causes the period of the rogue-dn-periodic wave to decrease. From the rogue-cn-periodic-wave solutions, when the GVD increases, the minimum amplitude of the rogue-cn-periodic wave decreases. Increase of the third-order dispersion or IMD leads to the decrease of the period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call