Abstract

The kinetics of selective CO oxidation (or individual CO or H2 oxidation) over ruthenium catalysts are considerably as affected by the heat released by the reaction and specifics of the interaction of ruthenium with feed oxygen. In a reactor with reduced heat removal (a quartz reactor) under loads of ∼701 gCat−1 h−1 and reagent percentages of ∼1 vol % CO, ∼1 vol % O2, ∼60 vol % H2, and N2 to the balance, the reaction can be carried out in the catalyst surface ignition regime. When catalyst temperatures are below ∼200°C, feed oxygen deactivates metallic ruthenium, the degree of deactivation being a function of temperature and treatment time. Accordingly, depending on the parameters of the experiment and the properties of the ruthenium catalyst, various scenarios of the behavior of the catalyst in selective CO oxidation are realized, including both steady and transition states: in a non-isothermal regime, a slow deactivation of the catalyst accompanied by a travel of the reaction zone through the catalyst bed along the reagent flow; activation of the catalyst; or the oscillation regime. The results of this study demonstrate that, for a strongly exothermic reaction (selective CO oxidation, or CO, or H2 oxidation) occurring inside the catalyst bed, the specifics of the entrance of the reaction into the surface ignition regime and the effects of feed components on the catalyst activity should be taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.