Abstract

Magnetic fields are a very special form of elastic medium. Within astrophysical environments (magnetized stars and protogalaxies) they counteract shear and rotational distortions as well as gravitational collapse. Their vector nature allows for their extraordinary coupling with space–time curvature in the framework of general relativity. This particular coupling points out the way to study magnetic elasticity under gravitational deformation. In this context, we reveal their law of elasticity, calculate their fracture limit and subsequently argue that they ultimately lose the battle against gravitational contraction of magnetized matter. Two illustrative applications, in a neutron star and a white dwarf, accompany the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.