Abstract

This paper presents novel characterization results for classes of law-invariant star-shaped functionals. We begin by establishing characterizations for positively homogeneous and star-shaped functionals that exhibit second- or convex-order stochastic dominance consistency. Building on these characterizations, we proceed to derive Kusuoka-type representations for these functionals, shedding light on their mathematical structure and intimate connections to Value-at-Risk and Expected Shortfall. Furthermore, we offer representations of general law-invariant star-shaped functionals as robustifications of Value-at-Risk. Notably, our results are versatile, accommodating settings that may, or may not, involve monotonicity and/or cash-additivity. All of these characterizations are developed within a general locally convex topological space of random variables, ensuring the broad applicability of our results in various financial, insurance and probabilistic contexts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.