Abstract
We introduce a language-grounded visual prompting method to adapt the visual encoder of vision-language models for downstream tasks. By capitalizing on language integration, we devise a parameter-efficient strategy to adjust the input of the visual encoder, eliminating the need to modify or add to the model's parameters. Due to this design choice, our algorithm can operate even in black-box scenarios, showcasing adaptability in situations where access to the model's parameters is constrained. We will empirically demonstrate that, compared to prior art, grounding visual prompts with language enhances both the accuracy and speed of adaptation. Moreover, our algorithm excels in base-to-novel class generalization, overcoming limitations of visual prompting and exhibiting the capacity to generalize beyond seen classes. We thoroughly assess and evaluate our method across a variety of image recognition datasets, such as EuroSAT, UCF101, DTD, and CLEVR, spanning different learning situations, including few-shot adaptation, base-to-novel class generalization, and transfer learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.