Abstract

We study a gas flow in the Laval nozzle, which is a convergent–divergent tube that has a sonic point in its throat. We show how to obtain the appropriate form of the tube, so that the acoustic perturbations of the gas flow in it satisfy any given wave-like equation. With the help of the proposed method we find the Laval nozzle, which is an acoustic analogue of the massive scalar field in the background of the Schwarzschild black hole. This gives us a possibility to observe in a laboratory the quasinormal ringing of the massive scalar field, which, for special set of the parameters, can have infinitely long-living oscillations in its spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.