Abstract

Abstract Lava flows form important fluid reservoirs and have been extensively exploited for water aquifers, geothermal energy, hydrocarbon production and, more recently, for carbon storage. Effusive subaerial mafic to intermediate lava flows account for vast rock volumes globally, and form reservoirs with properties dictated by well-known lava flow facies ranging from pāhoehoe through several transitional forms to ‘a’ā lava. These variations in flow type lead to critical differences in the pore structure, distribution, connectivity, strength and fracturing of individual lava flows, which, alongside lava flow package architectures, determine primary reservoir potential. Lava flow margins with vesicular, fracture and often autobreccia-hosted pore structures can have porosities commonly exceeding 40% and matrix permeabilities over 10 −11 m 2 (>10 D) separated by much lower porosity and permeability flow interiors. Secondary post-emplacement physicochemical changes related to fracturing, meteoric, diagenetic and hydrothermal alteration can significantly modify reservoir potential through a complex interplay of mineral transformation, pore-clogging secondary minerals and dissolution, which must be carefully characterized and assessed during exploration and appraisal. Within this contribution, a review of selected global lava flow-hosted reservoir occurrences is presented, followed by a discussion of the factors that influence lava flow reservoir potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.