Abstract

We introduce LAVA, a general-purpose python toolkit to provide user-friendly and high throughput calculations for material properties using both LAMMPS and VASP. It contains a set of classes as well as pre-processing and post-processing functions to prepare, execute and extract information from LAMMPS/VASP simulations. An overview of the program structure is provided. The current version contains modules to calculate elastic and mechanical properties such as lattice constant, cohesive energy, cold curve, elastic constants, bulk and shear modulus, volume conserving/non-conserving deformation path, vacancy/interstitial formation energy, surface energy, stacking fault energy, melting point, radial distribution function, and thermal expansion. These functionalities are demonstrated for different interatomic potentials and DFT calculations in Al. Program summaryProgram title: LAVACPC Library link to program files:https://doi.org/10.17632/6grh8x4hgt.1Licensing provisions: BSD 3-Clause LicenseProgramming language: PythonNature of problem: This program provides user-friendly and high throughput calculations for material properties via two widely-used LAMMPS and VASP code.Solution method: LAVA can prepare the input scripts, extract, calculate and even plot the material properties from molecular dynamics simulations and density functional calculations together with bash and python scripts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.