Abstract

The Laurentian Great Lakes represent an extensive, interconnected aquatic system dominated by its coastal nature. While the lakes are large enough to be significantly influenced by the earth's rotation, they are at the same time closed basins to be strongly influenced by coastal processes (Csanady, 1984). Nowhere is an understanding of how physical, geological, chemical, and biological processes interact in a coastal system more important to a body of water than the Great Lakes. Several factors combine to create complex hydrodynamics in coastal systems, and the associated physical transport and dispersal processes of the resulting coastal flow field are equally complex. Physical transport processes are often the dominant factor in mediating geochemical and biological processes in the coastal environment. Thus, it is critically important to have a thorough understanding of the coastal physical processes responsible for the distribution of chemical and biological species in this zone. However, the coastal regions are not isolated but are coupled with mid-lake waters by exchanges involving transport of materials, momentum, and energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.