Abstract
One of the main results of the article [2] says that, if a ring R is semiperfect and ϕ is an authomorphism of R, then the skew Laurent series ring R((x, ϕ)) is semiperfect. We will show that the above statement is not true. More precisely, we will show that, if the Laurent series ring R((x)) is semilocal, then R is semiperfect with nil Jacobson radical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.