Abstract
The formation of a vein during cyclic shearing of a single copper crystal oriented for single slip can be followed in transmission Laue diffraction by analyzing the spatially resolved lattice rotation evolution. Because Laue transmission integrates the signal over the thickness of the sample, the structure of the vein in the beam direction is a priori believed to be inaccessible. Here we show that the vein geometry in the beam direction can be retrieved by comparing lattice curvature tensor components from crystal plasticity finite element simulations with those experimentally derived. Virtual sectional analysis facilitates the interpretation of the measured lattice curvatures of quasi-2D dislocation structures, allowing identifying a vein morphology that is slightly vertically and horizontally inclined in the through thickness direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.