Abstract
Snider initiated the study of lattices of the class of radicals, in the sense of Kurosh and Amitsur, of associative rings. Various authors continued the investigation in more general universal classes. Recently, Fernández-Alonso et al. studied the lattice of all preradicals in R-Mod. Our definition of a preradical is weaker than theirs. In this paper, we consider the lattices of ideal maps 𝕀, preradical maps ℙ, Hoehnke radical maps ℍ and Plotkin radical maps 𝔹 in any universal class of Ω-groups (of the same type). We show that 𝕀 is a complete and modular lattice which contains atoms. In general, 𝕀 is not atomic. 𝕀 contains ℙ as a complete and atomic sublattice, whereas ℍ and 𝔹 are not sublattices of 𝕀. In its own right, ℍ is a complete and atomic lattice and 𝔹 is a complete lattice. We identify subclasses of 𝕀, ℙ and ℍ that are sublattices or preserve the meet (or join) of these respective lattices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.