Abstract

To address the quantum attacks on number theory-based ciphertext policy attribute-based encryption (CP-ABE), and to avoid private key leakage problems by relying on a trustworthy central authority, we propose a lattice-inspired CP-ABE scheme for data access and sharing based on blockchain in this paper. Firstly, a CP-ABE-based algorithm using learning with errors (LWE) assumption is constructed, which is selective security under linear independence restriction in the random oracle model. Secondly, the blockchain nodes can act as a distributed key management server to offer control over master keys used to generate private keys for different data users that reflect their attributes through launching transactions on the blockchain system. Finally, we develop smart contracts for proving the correctness of proxy re-encryption (PRE) and provide auditability for the whole data-sharing process. Compared with the traditional CP-ABE algorithm, the post-quantum CP-ABE algorithm can significantly improve the computation speed according to the result of the functional and experimental analysis. Moreover, the proposed blockchain-based CP-ABE scheme provides not only multi-cryptography collaboration to enhance the security of data access and sharing but also reduces average transaction response time and throughput.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call