Abstract

Massive multiple-input multiple-output (MIMO) system plays an important role of increasing spectral efficiency in the fifth-generation (5G) cellular communication. The MIMO detection complexity increases significantly along with the number of antennas. Thus, the design of high-performance low-complexity detector for massive MIMO is a challenging design issue for the 5G system. This paper proposes a lattice-reduction-aided (LRA) symbol-wise (SW) detection technique to enhance the performance of the intra-iterative interference cancellation (IIC) detector based on Newton’s method. The proposed SW IIC detector has near minimum-mean-square-error performance with faster convergence speed and lower computational complexity than the original IIC detector. In a 64-QAM $128 \times 8$ up-link MIMO system, the proposed LRA SW IIC detector reduces about 95.35% computational complexity of the original IIC detector under the same BER performance. Considering the preprocessing complexity of the LR in the time-varying channel, the proposed LRA SW IIC detector still has lower complexity when the coherent frame size is larger than 12 MIMO symbols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call