Abstract
R. E. Johnson (10), Utumi (18), and Findlayand Lambek (7) have defined for each ring R a unique maximal "ring of right quotients" Q. When R is a commutative integral domain (in this paper an integral domain need not be commutative) or an Ore domain, then Q is the usual division ring of quotients of R. Moreover, it is well known that in these special cases, if R is totally ordered, then so is Q.The main purpose of this paper is to study the ring of quotients Q, and in particular its order properties, for certain lattice-ordered rings R.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.