Abstract

In this work, the array arrangement of cascade enzymes was implemented by alternately and equidistantly anchoring two model enzymes glucose oxidase (GOx) and horseradish peroxidase (HRP) to the vertexes of rigid DNA tetrahedron units in lattice-like nucleic acid scaffold, in which the distance between any adjacent cascade enzymes had been regulated to the optimum for obtaining high enzyme cascade catalytic efficiency. Compared to the enzyme cascade system with no-array arrangement of cascade enzymes, the proposed enzyme cascade system allowed the intermediate H2O2 produced by GOx catalyzing substrate glucose to concurrently and equidistantly diffuse toward the four adjacent HRP enzyme surfaces. In this case, the invalid diffusion effect of intermediate H2O2 between cascade enzymes could be effectively avoided, thereby promoting the enzyme cascade reaction with high catalytic efficiency. The specific catalytic efficiency (kcat/Km) of the cascade enzyme system with array arrangement had been evaluated, which exhibited catalytic efficiency about 3.6 times higher than that of the randomly arranged cascade enzyme system. As a result, this strategy provided a new avenue for constructing a highly efficient enzyme cascade system with ultimate applications in biosynthesis, bioanalysis, and biodiagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.