Abstract

We present an adaptive lattice Boltzmann model to simulate supersonic flows. The particle velocities are determined by the mean velocity and internal energy. The adaptive nature of particle velocities permits the mean flow to have high Mach number. A particle potential energy is introduced so that the model is suitable for the perfect gas with arbitrary specific heat ratio. The Navier-Stokes equations are derived by the Chapman-Enskog method from the BGK Boltzmann equation. As preliminary tests, two kinds of simulations have been performed on hexagonal lattices. One is the one-dimensional simulation for sinusoidal velocity distributions. The velocity distributions are compared with the analytical solution and the measured viscosity is compared with the theoretical values. The agreements are basically good. However, the discretion error may cause some non-isotropic effects. The other simulation is the 29 degree shock reflection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call