Abstract

In this paper, we propose a new hard problem, called bilateral inhomogeneous small integer solution (Bi-ISIS), which can be seen as an extension of the small integer solution problem on lattices. The main idea is that, instead of choosing a rectangle matrix, we choose a square matrix with small rank to generate Bi-ISIS problem without affecting the hardness of the underlying SIS problem. Based on this new problem, we present two new hardness problems: computational Bi-ISIS and decisional problems. As a direct application of these problems, we construct a new lattice-based key exchange (KE) protocol, which is analogous to the classic Diffie- Hellman KE protocol. We prove the security of this protocol and show that it provides better security in case of worst-case hardness of lattice problems, relatively efficient implementations, and great simplicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.