Abstract

The study aimed to understand how changes in crystal's size affect the lattice parameters and crystal structure of Mg1-xNixO solid solution for six X values ranging from x = 0 to x = 1. Mg1-xNixO was synthesized via two different wet-chemical techniques: the sol-gel and the microwave hydrothermal method, both followed by calcination at different temperatures of 673, 873, 1073, 1273 and 1473 K. As annealing caused grain growth, the varied temperature range allowed to examine a wide range of grain sizes. The lattice parameters and x values were determined from XRD (X-ray diffraction) peak positions and intensities respectively. The grain size was evaluated by XRD line profile analysis and supported by SEM (scanning electron microscope) observations. At the temperatures of 673 and 873 K grain size was in the nanometric range and from 1073 K and above grain size was in the micrometric range. A non-monotonic lattice variation versus grain size was found for each concentration. When grain size decreased there was a slight contraction, however for grain size in the nanometric range there was a severe lattice expansion. Both lattice parameter changes were explained by two effects acting together: contraction due to surface stress and expansion due to weakening of the ionic bonding at nanocrystalline particles. In this current research study, the lattice parameter was mapped in two dimensions: concentration and grain size. The findings of this study provided valuable insights into the lattice variation in the MgO–NiO solid solution system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.