Abstract

In this paper we study fuzzy Turing machines with membership degrees in distributive lattices, which we called them lattice-valued fuzzy Turing machines. First we give several formulations of lattice-valued fuzzy Turing machines, including in particular deterministic and non-deterministic lattice-valued fuzzy Turing machines ( l-DTMcs and l-NTMs). We then show that l-DTMcs and l-NTMs are not equivalent as the acceptors of fuzzy languages. This contrasts sharply with classical Turing machines. Second, we show that lattice-valued fuzzy Turing machines can recognize n-r.e. sets in the sense of Bedregal and Figueira, the super-computing power of fuzzy Turing machines is established in the lattice-setting. Third, we show that the truth-valued lattice being finite is a necessary and sufficient condition for the existence of a universal lattice-valued fuzzy Turing machine. For an infinite distributive lattice with a compact metric, we also show that a universal fuzzy Turing machine exists in an approximate sense. This means, for any prescribed accuracy, there is a universal machine that can simulate any lattice-valued fuzzy Turing machine on it with the given accuracy. Finally, we introduce the notions of lattice-valued fuzzy polynomial time-bounded computation ( lP) and lattice-valued non-deterministic fuzzy polynomial time-bounded computation ( lNP), and investigate their connections with P and NP. We claim that lattice-valued fuzzy Turing machines are more efficient than classical Turing machines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.