Abstract

The thermal conductivities along the basal and hexagonal directions of α-quartz silica, the low-temperature form of crystalline SiO2, are predicted from the solution of the Boltzmann transport equation combined with the van Beest, Kramer, and van Santen potential for the temperature up to 900 K and the pressure as high as 4 GPa. The thermal conductivities at atmospheric pressure, which show a negative and nonlinear dependence on temperature, are in reasonable agreement with the experimental data. The influence of pressure on thermal conductivity is positive and linear. The pressure (P) and temperature (T) dependences of the thermal conductivity (λ) in basal and hexagonal directions are fitted to a function of the form λ=(b+cP)Ta. The thermal conductivity, influenced by temperature and pressure, is analyzed based on phonon properties, including spectral thermal conductivity, dispersion relation, phonon density of states, phonon lifetime, and phonon probability density distribution function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call