Abstract
Mg3(BixSb1-x)2 (0 ≤ x ≤ 1) nanocomposites are a highly appealing class of thermoelectric materials that hold great potential for solid-state cooling applications. Tuning of the lattice thermal conductivity is crucial for improving the thermoelectric properties of these materials. Hereby, we investigated the lattice thermal conductivity of Mg3(BixSb1-x)2 nanocomposites with varying Bi content (x = 0.0, 0.25, 0.5, 0.75, and 1.0) using first-principles calculations. This study reveals that the lattice thermal conductivity follows a classical inverse temperature-dependent relationship. There is a significant decrease in the lattice thermal conductivity when the Bi content increases from 0 to 0.25 or decreases from 1.0 to 0.75 at 300 K. In contrast, when the Bi content increases from 0.25 to 0.75, the lattice thermal conductivity experiences a gradual decrease and reaches a plateau. For the nanohybrids (x = 0.25, 0.5, and 0.75), the distribution patterns of the phonon group velocity and phonon lifetime are similar, with consistent distribution intervals. Consequently, the change in lattice thermal conductivity is not pronounced. However, the phonon group speed and phonon lifetime are generally lower compared to those of the pristine components with x = 0 and x = 1.0. Our results suggest that the lattice thermal conductivity is sensitive to impurities but not to concentrations. This research provides valuable theoretical insights for adjusting the lattice thermal conductivity of Mg3(BixSb1-x)2 nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.