Abstract

The reversible binding of molecules to surfaces is one of the most fundamental processes in condensed fluids, with obvious applications in the molecular separation of materials, chromatographic characterization, and material processing. Motivated in particular by the ubiquitous occurrence of binding processes in molecular biology and self-assembly, we have developed a lattice type theory of competitive molecular binding to solid substrates from binary mixtures of two small molecule liquids that interact between themselves by van der Waals forces in addition to exhibiting binding interactions with the solid surface. The derived theory, in contrast to previously existing theoretical frameworks, enables us to investigate the influence of van der Waals interactions on interfacial binding and selective molecular adsorption. For reference, the classic Langmuir theory of adsorption is recovered when all van der Waals interaction energies between the molecules in the bulk liquid phase and those on the surface are formally set to zero. Illustrative calculations are performed for the binding of molecules to a solid surface from pure liquids and from their binary mixtures. The properties analyzed include the surface coverage θ, the binding transition temperature Tbind, the individual surface coverages, θA and θC, and the relative surface coverages, σAC≡θA/θC or σCA≡θC/θA. The latter two quantities coincide with the degrees of adsorption directly determined from experimental adsorption measurements. The Langmuir theory is shown to apply formally under a wide range of conditions where the original enthalpies (Δh or ΔhA and ΔhC) and entropies (Δs or ΔsA and ΔsC) of the binding reactions are simply replaced by their respective "effective" counterparts (Δheff or ΔhAeff and ΔhCeff and Δseff or ΔsAeff and ΔsCeff), whose values depend on the strength of der Waals interactions and of the "bare" free energy parameters (Δh or ΔhA and ΔhC, and Δs or ΔsA and ΔsC). Numerous instances of entropy-enthalpy compensation between these effective free energy parameters follow from our calculations, confirming previous reports on this phenomenon obtained from experimental studies of molecular binding processes in solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call