Abstract

This paper investigates linear precoding over nonsingular linear channels with additive white Gaussian noise, with lattice-type inputs. The aim is to maximize the minimum distance of the received lattice points, where the precoder is subject to an energy constraint. It is shown that the optimal precoder only produces a finite number of different lattices, namely perfect lattices, at the receiver. The well-known densest lattice packings are instances of perfect lattices, but are not always the solution. This is a counter-intuitive result as previous work in the area showed a tight connection between densest lattices and minimum distance. Since there are only finite many different perfect lattices, they can theoretically be enumerated offline. A new upper bound on the optimal minimum distance is derived, which significantly improves upon a previously reported bound, and is useful when actually constructing the precoders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.