Abstract

This paper studies the combinatorics of lattice congruences of the weak order on a finite Weyl group $W$, using representation theory of the corresponding preprojective algebra $\unicode[STIX]{x1D6F1}$. Natural bijections are constructed between important objects including join-irreducible congruences, join-irreducible (respectively, meet-irreducible) elements of $W$, indecomposable $\unicode[STIX]{x1D70F}$-rigid (respectively, $\unicode[STIX]{x1D70F}^{-}$-rigid) modules and layers of $\unicode[STIX]{x1D6F1}$. The lattice-theoretically natural labelling of the Hasse quiver by join-irreducible elements of $W$ is shown to coincide with the algebraically natural labelling by layers of $\unicode[STIX]{x1D6F1}$. We show that layers of $\unicode[STIX]{x1D6F1}$ are nothing but bricks (or equivalently stones, or 2-spherical modules). The forcing order on join-irreducible elements of $W$ (arising from the study of lattice congruences) is described algebraically in terms of the doubleton extension order. We give a combinatorial description of indecomposable $\unicode[STIX]{x1D70F}^{-}$-rigid modules for type $A$ and $D$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.