Abstract

This thesis focuses on an unresolved problem in particle and nuclear physics: the relation between two important non-perturbative phenomena in quantum chromodynamics (QCD) – quark confinement and chiral symmetry breaking. The author develops a new analysis method in the lattice QCD, and derives a number of analytical formulae to express the order parameters for quark confinement, such as the Polyakov loop, its fluctuations, and the Wilson loop in terms of the Dirac eigenmodes closely related to chiral symmetry breaking. Based on the analytical formulae, the author analytically as well as numerically shows that at finite temperatures there is no direct one-to-one correspondence between them. The thesis describes this extraordinary achievement using the first-principle analysis, and proposes a possible new phase in which quarks are confined and chiral symmetry is restored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.